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1.0 INTRODUCTION

Software evolution represents the cycle of activities involved in the development, use, and mainte-
nance of software systems. Software systems come and go through a series of passages that account
for their inception, initial development, productive operation, upkeep, and retirement from one gen-
eration to another. In this paper, we categorize and examine a number of schemes for modelling soft-
ware evolution. We start with some definitions of the terms used to characterize and compare differ-
ent models of software evolution. We next review the traditional software life cycle models which
dominate most textbook discussions and current software development practices. This is followed by a
more comprehensive review of the alternative models of software evolution that have been recently
proposed and used as the basis for organizing software engineering projects and technologies. As such,
we then examine what are the role of existing and emerging software engineering technologies in these
models. We then provide some practical guidelines for evaluating the alternative models of software
evolution, and for customizing an evolutionary model to best suit your needs. Ultimately, the objective
in this paper is to assess our ability to articulate the basis for substantive theory of software evolution
which can serve as both a guide for organizing software development efforts. as well as a basis for
organizing empirical studies that can test, validate, and refine hypotheses about the statics and dynam-
ics of software evolution.

We start this examination with some background definitions and concepts.

1.1 BACKGROUND

Charles Darwin is often recognized as the person who focused scientific attention to the problems
of developing an empirically-grounded theory of biological evolution. Darwin's model of the evolution
of species was provocative in both scientific and religious circles. His model identifies four central
characteristics that account for the development of natural species: (a) emergence of variations within
existing species, (b) some mechanism of inheritance to preserve the variations, (c) tendency to multi-
ply (reproduce) leading to competition for scarce resources, and (d) environmentally-driven "natural"
selection across generations.

Darwin's model was monumental in precipitating a realignment in research methods and theories
in the biological sciences, establishing a separate discipline of evolutionary biology, and giving rise to
thousands of experiments that sought to refute, validate, or extend his empirically grounded theori-s
and conjectured hypotheses of biological evolution 122]. The concept of what we now identify as "sys-
tem life cycle" thus has in its historical origins in the field of evolutionary biology. The field oi cyber-
netics however added the control and evolution of technological systems to the evolutionar, liie cycle
concept. In turn, the notions of software life cycle and evolution we examine in this pap.r can be
traced back to these scientific roots.

Nonetheless, we should recognize that the emergence of a viable theory of software evolution
might lead to paradigmatic shifts similar to those put in to motion by Darwin's 'heory. Alternatively, a
viable theory of software evolution might lead to new insights that shed light on how to most effec-
tively resolve some of the long-standing dilemmas of software engineering including how to: improve
development productivity, reduce development and maintenance costs, 13etter facilitate improved soft-
ware project management, streamline the software technology transfe" process, and shape the funding
and policy objectives for national software engineering research initiatives. In some sense, these are
the ultimate "reality check" or validation criteria that a theory of software evolution will be sub-
jected to.
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Explicit models of software evolution date back to the earliest projects developing large software
systems in the 1950's and 1960's [15, 44, 74]. However, in contrast to the inter-generational Darwin-
ian model, software system development was cast, and generally still remains, as an intra-generational
process of growth and maturation.

Overall, the apparent purpose of these early software life cycle models was to provide an abstract
scheme for rationally managing the development of software systems. Such a scheme could therefore
serve as a basis for planning, organizing, staffing, coordinating, budgeting, and directing software
development activities. Figure I shows a flow-chart diagram of one of the first software development
life cycle models published in 1961 (441.

1.2 SOFIWARE LIFE CYCLE ACTIVITIES

For more than three decades, many descriptions of the classic software life cycle (often referred
to as "the waterfall chart") have appeared (e.g., [15, 74, 17, 31, 77, 33]). See Figure 2 for an
example of such a chart. These charts are often employed during introductory presentations to people
who may by unfamiliar with what kinds of technical problems and strategies must be addressed when
constructing large software systems.

These classic software life cycle models usually include some version or subset of the following
activities:

" System Initiation/Adoption: where do systems come from? In most situations, new systems
replace or supplement existing information processing mechanisms whether they were pre-
viously automated, manual, or informal.

" Requirement Analysis and Specification: identifies the problems a new software system is
supposed to solve, its operational capabilities, its desired performance characteristics, and
the resource infrastructure needed to support system operation and maintenance.

* Functional Specification or Prototyping: identifies and potentially formalizes the objects of
computation, their attributes and relationships, the operations that transform these objects,
the constraints that restrict system behavior, and so forth.

* Partition and Selection (Build vs. Buy vs. Reuse): given requirements and functional speci-
fications, divide the system into manageable pieces that denote logical subsystems, then
determine whether new, existing, or reusable software systems correspond to the needed
pieces.

" Architectural Configuration Specification: defines the interconnection and resource inter-
faces between system modules in ways suitable for their detailed design and overall con-
figuration management.

" Detailed Component Design Specification: defines the procedural methods through which
each module's data resources are transformed from required inputs into provided outputs.

* Component Implementation and Debugging: codifies the preceding specifications into
operational source code implementations and validates their basic operation.

* Software Integration and Testing: affirms and sustains the overall integrity of the software
system architectural configuration through verifying the consistency and completeness of
implemented modules, verifying the resource interfaces and interconnections against their
specifications, and validating the performance of the system and subsystems against their
requirements.
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Figure 1. An early software We cycle model, from W. A. Hosier.
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Figure 2. A software life cycle "waterfall chart."

" Documentation Revision and System Delivery: packaging and rationalizing recorded system
development descriptions into systematic documents and user guides, all in a form suitable
for dissemination and system support.

* Deployment and Installation: providing directions for installing the delivered software into
the local computing environment, configuring operating systems parameters and user access
privileges, running diagnostic test cases to assure the viability of basic system operation.

" Training and Use: providing system users with instructional aids and guidance for under-
standing the system's capabilities and limits in order to effectively use the system.

" Software Maintenance: sustaining the useful operation of a system in its host/target envi-
ronment by providing requested functional enhancements, repairs, performance improve-
ments, and conversions.

1.3 WHAT IS A SOFTWARE LIFE CYCLE MODEL?

A software life cycle model is either a descriptive or prescriptive characterization of software evo-
lution. Typically, it is easier and more common to articulate a prescriptive life cycle model for how
software systems should be developed. This is possible since most such models are intuitive or well-
reasoned. In turn, this allows these models to be used as a basis for software project organization.
This means that many idiosyncratic details for how to organize a software development effort can be
ignored, glossed over, generalized, or deferred for later consideration. This, of course, should raise
concern for the relative validity and robustness of such life cycle models when developing different
kinds of application systems, in different kinds of development settings, using different programming
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languages, with differentially skilled staff, etc. However, prescriptive models are also used to package
the development tasks and techniques for using a given set of software engineering tools or environ-
ment during a development project.

Descriptive life cycle models, on the other hand, characterize how particular software systems are
actually developed in specific settings. As such, they are less common and more difficult to articulate
for an obvious reason: one must observe or collect data throughout the life cycle of a software system,
a period of elapsed time usually measured in years. Also, descriptive models are specific to the sys-
tems observed, and only generalizable through systerratic comparative analysis. Therefore, this suggests
the prescriptive software life cycle models will dominate attention until a sufficient base of observa-
tional data is available to articulate empirically grounded descriptive life cycle models.

These two characterizations suggest that there are a variety of purposes for articulating software
life cycle models. This variety includes:

0 To organize, plan, staff, budget, schedule and manage software project work over organ-

izational time, space, and computing environments.

* As prescriptive outlines for what documents to produce for delivery to client.

* As a basis for determining what software engineering tools and methodologies will be most
appropriate to support different life cycle activities.

* As frameworks for analyzing or estimating patterns of resource allocation and consumption
during the software life cycle [18].

* As comparative descriptive or prescriptive accounts for how software systems come to be
the way they are.

" As a basis for conducting empirical studies to determine what affects software productivity,
cost, and overall quality.

1.4 WHAT IS A SOFTWARE PROCESS MODEL?

A software process model often represents a networked sequence of activities, objects, transforma-
tions, and events that embody strategies for accomplishing software evolution [71, 88, 32]. Such mod-
els can be used to develop more precise and formalized descriptions of software life cycle activities.
Their power emerges from their utilization of a sufficiently rich notation, syntax, or semantics, often
suitable for computational processing.

Software process networks can be viewed as representing multiple interconnected task chains [56,
341. Task chains represent a non-linear sequence of actions {By this we mean that the sequence of
actions may be nondeterministic, iterative, accommodate multiple/parallel alternatives, as well as be
partially ordered to account for incremental progress.) that structure and transform available computa-
tional objects (resources) into intermediate or finished products. Task actions in turn can be viewed
as non-linear sequences of primitive actions which denote atomic units of computing work, such as a
user's selection of a command or menu entry using a mouse or keyboard. Winograd and others have
referred to these units of cooperative work between people and computers as "structured discourses of
work" [901.

Task chains can be employed to characterize either prescriptive or descriptive action sequences.
Prescriptive task chains are idealized plans of what actions should be accomplished, and in what
order. For example, a task chain for the activity of object-oriented software design might include the
following task actions:
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* Develop an informal narrative specification of the system.

* Identify the objects and their attributes.

* Identify the operations on the objects.

* Identify the interfaces between objects, attributes, or operations.

* Implement the operations.

Clearly, this sequence of actions could entail multiple iterations and non-procedural primitive
action invocations in the course of incrementally progressing toward an object-oriented software
design.

Task chains join or split into other task chains resulting in an overall production lattice [56]. The
production lattice represents the "organizational production system" that transforms raw computa-
tional, cognitive, and other organizational resources into assembled, integrated and usable software
systems. The production lattice therefore structures how a software system is developed, used, and
maintained. However, prescriptive tasks chains and actions cannot be formally guaranteed to antici-
pate all possible circumstances or idiosyncratic foul-ups that can emerge in the real-world of software
development [37, 36]. Thus any software production lattice will in some way realize only an approxi-
mate or incomplete description of software development. As such, articulation work (Articulation work
in the context of software evolution includes actions people take that entail either their accommoda-
tion to the contingent or anomalous behavior of a software system, or negotiation with others who
may be able to affect a system modification or otherwise alter current circumstances [14]. In other
places, this notion of articulation work has been referred to as software process dynamism.} will be
performed when a planned task chain is inadequate or breaks down. The articulation work can then
represent an open-ended nondeterministic sequence of actions taken to restore progress on the disar-
ticulated task chain, or else to shift the flow of productive work:onto some other task chain [141.
Thus, descriptive task chains are employed to characterize the observed course of events and situ-
ations that emerge when people try to follow a planned task sequence.

1.5 EVOLUTIONISTIC VS. EVOLUTIONARY MODELS

Every model of software evolution makes certain assumptions about what is the meaning of evolu-
tion. In one such analysis of these assumptions, two distinct views are apparent: evolutionistic models
focus attention to the direction of change in terms of progress through a series of stages eventually
leading to some final stage; evolutionary models on the other hand focus attention to the mechanisms
and processes that change systems 154). Evolutionistic models are often intuitive and useful as organ-
izing frameworks for managing and tooling software development efforts. But they are poor predictors
of why certain changes are made to a system, and why systems evolve in similar or different ways
[14). Evolutionary models are concerned less with the stage of development, but more with the tech-
nological mechanisms and organizational processes that guide the emergence of a system over space
and time. As such, it should become apparent that the prescriptive models are typically evolutionistic,
while most of the alternative models are evolutionary.

1.6 THE NEGLECTED ACTIVITIES OF SOFTWARE EVOLUTION

Three activities critical to the overall evolution of software systems are maintenance, technology
transfer, and evaluatLon. However, these activities are often inadequately addressed in most models of
software evolution. Thus, any model of software evolution should be examined to see to what extent it
ad-% esses these activities.
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Software maintenance often seems to be described as just another activity in the evolution of soft-
ware. However, many studies indicate that software systems spend most of their useful life in this
activity [17, 18]. A reasonable examination of the activity indicates that maintenance represent ongo-
ing incremental iterations through the life cycle or process activities that precede it [8]. These itera-
tions are an effective way to incorporate new functional enhancements, remove errors, restructure
code, improve system performance, or convert a system to run in another environment. The various
instances of these types of software system alterations emerge through ongoing system use within regu-
lar work activities and settings. Subsequently, software maintenance activities represent smaller or
lower profile passages through the life cycle. Further, recent interest in software re-engineering and
reverse engineering as new approaches to software maintenance suggests that moving forward in a soft-
ware life cycle depends on being able to cycle backwards [26]. However, it is also clear that many
other technical and organizational circumstances profoundly shape the evolution of a software system
and its host environment [62, 60, 14]. Thus, every software life cycle or process model should be
closely examined to see to what extent it accounts for what happens to a software system during most
of its sustained operation.

Concerns for system adoption, installation and support can best be addressed during the earliest
stages of software evolution. These entail understanding which users or clients control the resources
(budgets, schedules, staff levels, or other "purse strings") necessary to facilitate the smooth transition
from the current system in place to the new adopted system. It also entails understanding who will
benefit (and when) from smooth software technology transfer and transition, as well as who will be
allowed to participate and express their needs. These concerns eventually become the basis for deter-
mining the success or failure of software system use and maintenance activities. Early and sustained
involvement of users in system development is one of the most direct ways to increase the likelihood
of successful software technology transfer. Failure to involve users is one of the most common reasons
why system use and maintenance is troublesome. Thus, any model of software evolution can be evalu-
ated according to the extent that it accommodates activities or mechanisms that encourage system
developers and users to more effectively cooperate.

Evaluating the evolution of software systems helps determine which development activities or
actions could be made more effective. Many models of software evolution do not address how system
developers (or users) should evaluate their practices to determine which of their activities could be
improved or restructured. For example, technical reviews and software inspections often focus atten-
tion to how to improve -he quality of the software products being developed, while the organizational
and technological processes leading to these products receive less attention. Evaluating development
activities also implies that both the analytical skills and tools are available to a development group.
Thus, models of software evolution can also be scrutinized to determine to what extent they incorpo-
rate or structure development activities in ways that provide developers with the means to evaluate the
effectiveness of the engineering practices.

Finally, one important purpose of evaluating local practices for software eP ,ution is to identify
opportunities where new technologies can be inserted. In many situations, new software engineering
tools, techniques, or management strategies are introduced during the course of a system development
effort. How do such introductions impact existing practices? What consequences do such introductions
have on the maintainability of systems currently in use or in development? In general, most models of
software evolution say little about such questions. However, software maintenance, technology transfer,
and process evaluation are each critical to the effective evolution of software systems, as is their effect
on each other. Thus, they should be treated collectively, and in turn, models of software evolution
can be reviewed in terms of how well they address this collective.
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2.0 TRADITIONAL SOFTWARE LIFE CYCLE MODELS

Traditional models of software evoluticn have been with us since the earliest days of software
engineering. In this section, we identify four. The classic software life cycle (or "waterfall chart") and
stepwise refinement models are widely instantiated in just about all books on modem programming
practices and software engineering. The incremental release model is closely related to industrial prac-
tices where it most often occurs. Military standards based models have also reified certain forms of
the classic life cycle model into required practice for government contractors. Each of these four mod-
els use "coarse-grain" or macroscopic characterizations (The progressive steps of software evolution
are often described as "stages"-such as requirements specification, preliminary design, and implemen-
tation-which have usually had little or no further characterization other than a list of attributes that
the product of such a stage should possess.) when describing software evolution. Further, these models
are independent of any organizational development setting, choice of programming language, soft"-re
application domain, etc. In short, the traditional models are context-free rather than context-sensitive.
But as all of these life cycle models have been in use for some time, we refer to them as the tradi-
tional models, and characterize each in turn:

2.1 CLASSIC SOFTWARE LIFE CYCLE

The classic software life cycle is often represented as a simple waterfall software phase model,
where software evolution proceeds through an orderly sequence of transitions from one phase to the
next in order (741. Such models resemble finite state machine descriptions of software evolution.
However, such models have been perhaps most useful in helping to structure, staff, and manage large
software development projects in complex otganizational settings, which was one of the primary pur-
poses [74, 17]. Alternatively, these classic models have been widely characterized as both poor
descriptive and prescriptive models of how software development "in-the-small" or "in-the-large" can
or should occur.

2.2 STEPWISE REFINEMENT

In this approach, software systems are developed through the progressive refinement and enhance-
ment of high-level system specifications into source code components [91]. However, the choice and
order of which steps to choose and which refinements to apply remain unstated. Instead, formalization
is expected to emerge within the heuristics and skills that are acquired and applied through increas-
ingly competent practice. This model has been most effective and widely applied in helping to teach
individual programmers how to organize their software development work. Many interpretations of the
classic software life cycle thus subsume this apmroach within their design and implementations.

2.3 ITERATIVE ENHANCEMENT, INCREMENTAL DEVELOPMENT AND
RELEASE

Developing systems through incremental release requires first providing essential operating func-
tions, then providing system users with improved and more capable versions of a system at regular
intervals [8, 86]. This model combines the classic software life cycle with iterative enhancement at the
level of system development organization. It also supports a strategy to periodically distribute software
maintenance updates and services to dispersed user communities. This in turn accommodates the pro-
vision of standard software maintenance contracts. It is therefore a popular model of software
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evolution used by many commercial software firms and system vendors. More recently, this approach
has been extended through the use of software prototyping tools and techniques (described later),
which more directly provide support for incremental development and iterative release for early and
ongoing user feedback and evaluation [39]. Last, the Cleanroom software development method at use
in IBM and NASA laboratories provides incremental release of software functions and/or subsystems
(developed through stepwise refinement) to separate in-house quality assurance teams that apply statis-
tical measures and analyses as the basis for certifying high-quality software systems [82, 65].

2.4 INDUSTRIAL AND MILITARY STANDARD MODELS

Industrial firms often adopt some variation of the classic model as the basis for standardizing their
software development practices [74, 17, 31, 77, 78]. Such standardization is often motivated by needs
to simplify or eliminate complications that emerge during large software development or project man-
agement.

Many government contractors organize their software development activities according to military
standards such as that embodied in MIL-STD-2167 [641. Such standards outline not only a variant of
the classic life cycle activities, but also the types of documents required by clients who procure either
software systems or complex platforms with embedded software systems. Military software systems are
often constrained in ways not found in industrial or academic practice, including: (a) required use of
military standard computing equipment (which is often technologically dated and possesses limited
proces *ng capabilities); (b) are embedded in larger systems (e.g., airplanes, submarines, missiles,
command and control systems) which are "mission-critical" (i.e., those whose untimely failure could
result in military disadvantage and/or life-threatening risks); (c) are developed under contract to pri-
vate firms through cumbersome procurement and acquisition procedures that can be subject to public
scrutiny and legislative intervention; and (d) many embedded software systems for the military are
among the largest and most complex systems in the world. In a sense, military software standards are
applied to simplify and routinize the administrative processing, review, and oversight required by such
institutional circumstances. However, this does not guarantee that delivered software systems will be
easy to use or maintain. Nor does it necessarily indicate what decisions processes or trade-offs were
made in developing the software so as to conform to the standards, to adhere to contract constraints,
or to insure attainment of contractor profit margins. Thus, these conditions may not make software
development efforts for the military necessarily most effective or well-engineered.

In industrial settings, standard software development models represent often provide explicit
detailed guidelines for how to deploy, install, customize or tune a new software system release in its
operating application environment. In addition, these standards are intended to be compatible with
provision of software quality assurance, configuration management, and independent verification and
validation services in a multi-contractor development project. Recent progress in industrial practice
appears in [47, 72, 941. However, neither such progress, nor the existence of such standards within a
company, necessarily implies to what degree standards are routinely followed, whether new staff hires
are trained in the standards and conformance, or whether the standards are considered effective.

2.5 ALTERNATIVES TO THE TRADITIONAL SOFTWARE LIFE CYCLE
MODELS

There are at least three alternative sets of models of software evolution. These models are alterna-
tives to the traditional software life cycle models. These three sets focus of attention to either the
products, production processes, or production settings associated with software evolution. Collectively,
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these alternative models are finer-grained, often detailed to the point of computational formalization,
more often empirically grounded, and in some cases address the role of new automated technologies
in facilitating software evolution. As these models are not in widespread practice, we examine each set
of models in the following sections.

3.0 SOFTWARE PRODUCT DEVELOPMENT MODELS

Software products repi-esent the information-intensive artifacts that are incrementally constructed
and iteratively revised through a software development effort. Such efforts can be modeled using soft-
ware product life cycle models. These product development models represent an evolutionary revision
to the traditional software life cycle models. The revisions arose due to the availability of new software
development technologies such as software prototyping languages and environments, reusable software,
application generators, and documentation support environments. Each of these technologies seeks to
enable the creation of executable software implementations either earlier in the software development
effort or more rapidly. Therefore in this regard, the models of software evolution may be implicit in
the use of the technology, rather than explicitly articulated. This is possible because such models
become increasingly intuitive to those developers whose favorable experiences with these technologies
substantiates their use. Thus, detailed examination of these models is most appropriate when such
technologies are available for use or experimentation.

3.1 RAPID PROTOTYPING
Prototyping is a technique for providing a reduced functionality or a limited performance version

of a software system early in its development (3, 84, 20, 23, 40, 27). In contrast to the classic system
life cycle, prototyping is an approach whereby more emphasis, activity, and processing is directed to
the early stages of software development (requirements analysis and functional specification). In turn.
prototyping can more directly accommodate early user participation in determining, shaping, or evalu-
ating emerging system functionality. As a result, this up-front concentration of effort, together with the
use of prototyping technologies, seeks to trade-off or otherwise reduce downstream software design
activities and iterations, as well as simplify the software implementation effort.

Software prototypes come in different forms including throwaway prototypes, mock-ups, demon-
stration systems, quick-and-dirty prototypes, and incremental evolutionary prototypes 1271. Increasing
functionality and subsequent ability to evolve is what distinguishes the prototype forms on this list.

Prototyping technologies usually take some form of software functional specifications as their start-
ing point or input, which in turn is either simulated, analyzed, or directly executed. As such, these
technologies allow software design activities to be initially skipped or glossed over. In turn, these tech-
nologies can allow developers to rapidly construct early or primitive versions of software systems that
users can evaluate. These user evaluations can then be incorporated as feedback to refine the emerg-
ing system specifications and designs. Further, depending on the prototyping technology, the complete
working system can be developed through a continual revising/refining the input specifications. This
has the advantage of always providing a working version of the emerging system, while redefining soft-
ware design and testing activities to input specification refinement and execution. Alternatively, other
prototyping approaches are best suited for developing throwaway or demonstration systems, or for
building prototypes by reusing part/all of some existing software systems.

3.2 ASSEMBLING REUSABLE COMPONENT SET
The basic approach of reusability is to configure and specialize pre-existing software components

into viable application systems [16, 66, 38]. Such source code components might already have
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associated specifications and designs associated with their implementations, as well as have been tested
and certified. However, it is also clear that software specifications, designs, test case suites may them-
selves be treated as reusable software development components. Therefore, assembling reusable soft-
ware components is a strategy for decreasing software development effort in ways that are compatible
with the traditional life cycle models.

The basic dilemmas encountered with reusable software component set include (a) how to define
an appropriate software part naming or classification scheme, (b) collecting or building reusable soft-
ware components, (c) configuring or composing components into a viable application [11, and (d)
maintaining and searching a components library [93]. In turn, each of these dilemmas is mitigated or
resolved in practice through the selection of software component granularity.

The granularity of the components (i.e., size, complexity, functional capability) varies greatly
across different approaches. Most approaches attempt to utilize components similar to common (text-
book) data structures with algorithms for their manipulation: small-grain components. However, the
use/reuse of small-grain components in and of itself does not constitute a distinct approach to software
evolution. Other approaches attempt to utilize components resembling functionally complete systems or
subsystems (e.g., user interface management system): large-grain components. The use/reuse of large-
grain components guided by an application domain analysis and subsequent mapping of attributed
domain objects and operations onto interrelated components does appear to be an alternative
approach to developing software systems [66], and thus is an area of active research.

There are many ways to utilize reusable software components in evolving software systems. How-
ever, the cited studies suggest their initial use during architectural or component design specification as
a way to speed implementation. They might also be used for prototyping purposes if a suitable soft-
ware prototyping technology is available.

3.3 APPLICATION GENERATION

Application generation is an approach to software development similar to reuse of parameterized,
large-grain softwi re source code components. Such components are configured and specialized to an
application domain via a formalized specification language used as input to the application generator.
Common examples provide standardized interfaces to database management system applications, and
include generators for reports, graphics, user interfaces, and application-specific editors [43].

Application generators give rise to a model of software evolution whereby traditional software
design activities are either all but eliminated, or reduced to a data base design problem. The software
design activities are eliminated or reduced because the application generator embodies or provides a
generic software design that is supposed to be compatible with the application domain. However, users
of application generators are usually expected to provide input specifications and application mainte-
nance services. These capabilities are possible since the generators can usually only produce software
systems specific to a small number of similar application domains, and usually those that depend on a
data base management system.

3.4 SOFTWARE DOCUMENTATION SUPPORT ENVIRONMENTS

Much of the focus on developing software products draws attention to the tangible software arti-
facts that result. Most often, these products take the form of documents: commented source code list-
ings, structured design diagrams, unit development folders, etc. These documents characterize what
the developed system is supposed to do, how it does it, how it was developed, how it was put together
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and validated, and how to install, use, and maintain it. Thus, a collection of software documents
records the passage of a developed software system through a set of life cycle stages.

It seems reasonable that there will be models of software development that focus attention to the
systematic production, organization, and management of the software development documents. Fur-
ther, as documents are tangible products, it is common practice when software systems are developed
under contract to a private firm, that the delivery of these documents is a contractual stipulation, as
well as the basis for receiving payment for development work already performed. Thus, the need to
support and validate conformance of these documents to software development and quality assurance
standards emerges. However, software development documents are often a primary medium for com-
munication between developers, users, and maintainers that spans organizational space and time.
Thus, each of these groups can benefit from automated mechanisms that allow them to browse, query,
retrieve, and selectively print documents 135]. As such, we should not be surprised to see construction
and deployment of software environments that provide ever increasing automated support for engi-
neering the software documentation life cycle [69, 42, 25, 351.

3.5 PROGRAM EVOLUTION MODELS

In contrast to the preceding four prescriptive product development models, Lehman and Belady
sought to develop a descriptive model of software product evolution. They conducted a series of
empirical studies of the evolution of large software systems at IBM during the 1970's [591. Based on
their investigations, they identify five properties that characterize the evolution of large software sys-
tems. These are:

1. Continuing change: a large software system undergoes continuing change or becomes pro-
gressively less useful

2. Increasing complexity: as a software system evolves, its increases unless work is done to
maintain or reduce it

3. Fundamental law of program evolution: program evolution, the programming process, and
global measures of project and system attributes are statistically self-regulating with deter-
minable trends and invariants

4. Invariant work rate: the rate of global activity in a large software project is statistically
invariant

5. Incremental growth limit: during the active life of a large program, the volume of modifi-
cations made to successive releases is statistically invariant.

However, it is important to observe that these are global properties of large software systems, not
causal mechanisms of software evolution.

4.0 SOFTWARE PRODUCTION PROCESS MODELS

There are two kinds of software production process models: non-operational and operational. Both
are software process models. The difference between the two primarily stems from the fact that the
operational models can be viewed as computational scripts or programs: programs that implement a
particular regimen of software engineering and evolution. Non-operational models on the other hand
denote conceptual approaches that have not yet been sufficiently articulated in a form suitable for
codification or automated processing.
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4.1 NON-OPERATIONAL PROCESS MODELS

There are two classes of non-operational software process models of the great interest. These are
the spiral model and the continuous transformation models. There are also a wide selection of other
non-operational models which for brevity we label as miscellaneous models. Each is examined in turn.

4.1.1 The Spiral Model

The spiral model of software development and evolution represents a risk-driven approach to soft-
ware process analysis and structuring [21]. This approach, developed by Barry Boehm, incorporates
elements of specification-driven, prototype-driven process methods, together with the classic software
life cycle. It does so by representing iterative development cycles as an expanding spiral, with inner
cycles denoting early system analysis and prototyping, and outer cycles denoting the classic software
life cycle. The radial dimension denotes cumulative development costs, and the angular dimension
denotes progress made in accomplishing each development spiral (see figure 3).

Risk analysis, which seeks to identify situations which might cause a development effort to fail or
go over budget/schedule, occurs during each spiral cycle. In each cycle, it represents roughly the same
amount of angular displacement, while the displaced sweep volume denotes increasing levels of effort
required for risk analysis. System development in this model therefore spirals out only so far as
needed according to the risk that must be managed. Alternatively, the spiral model indicates that the
classic software life cycle model need only be followed when risks are greatest, and after early system
prototyping as a way of reducing these risks, albeit at increased cost. Finally, efforts are now in pro-
gress to prototype and develop operational versions of the Spiral Model [831.

4.1.2 Continuous Transformation Models

These models propose a process whereby software systems are developed through an ongoing
series of transformations of problem statements into abstract specifications into concrete implementa-
tions [91, 8, 12, 2]. Lehman, Stenning, and Turski, for example, propose a scheme whereby there is
no traditional life cycle nor separate stages, but instead an ongoing series of reifying transformations
that turn abstract specifications into more concrete programs [57, 581. In this sense then, problem
statements and software systems can emerge somewhat together, and thus can continue to co-evolve.

Continuous transformation models also accommodate the interests of software formalists who seek
the precise statement of formal properties of software system specifications. Accordingly, the specified
formalisms can be mathematically transformed into properties that a source implementation should
satisfy. The potential for automating such models is apparent, but it still the subject of ongoing
research (and addressed below).

4.1.3 Miscellaneous Process Models

Many variations of the non-operational life cycle and process models have been proposed, and
appear in the proceedings of the four software process workshops [71, 88, 32, 83]. These include
fully interconnected life cycle models which accommodate transitions between any two phases subject
to satisfactior of their pre- and post-conditions, as well as compound variations on the traditional life
cycle and continuous transformation models. However, the cited reports indicate that in general most
software process models are exploratory, so little experience with these models has been reported.
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4.2 OPERATIONAL PROCESS MODELS

In contrast to the preceding non-operational process models, many models are now beginning to
appear that codify software engineerilg processes in computational terms-as programs or executable
models. Three classes of operational software process models can be identified and examined.

4.2.1 Operational Specifications For Rapid Prototyping

The operational approach to software development assumes the existence of a formal specification
language and processing environment (12, 3, 4, 95]. Specifications in the language are "coded," and
when computationally evaluated, constitute a functional prototype of the specified system. When such
specifications can be developed and processed incrementally, the resulting system prototypes can be
refined and evolved into functionally more complete systems. However, the emerging software systems
are always operational in some form during their development. Variations within this approach repre-
sent either efforts where the prototype is the end sought, or where specified prototypes are kept
operational but refined into a complete system.

The power underlying operational specification technology is determined by the specification lan-
guage. Simply stated, if the specification language is a conventional programming language, then noth-
ing new in the way of software development is realized. However, if the specification incorporates (or
extends to) syntactic and semantic language constructs that are specific to the application domain,
which usually are not part of conventional programming languages, then domain-specific rapid prot-
otyping can be supported.

An interesting twist worth note is that it is generally within the capabilities of many operational
specification languages to specify "systems" whose purpose is to serve as a model of an arbitrary
abstract process, such as a software process model. In this way, using a prototyping language and envi-
ronment, one might be able to specify an abstract model of some software engineering processes as a
system which produces and consumes certain types of documents, as well as the classes of develop-
ment transformations applied to them. Thus in this regard, it may be possible to construct operational
software process models that can be executed or simulated using software prototyping technology.
Humphrey and Kelner describe one such application and give an example using the graphic-based
state-machine notation provided in the STATECHARTS environment 1461.

4.2.2 Software Process Automation And Programming

Process automation and programming are concerned with developing "formal" specifications of
how a (family of) software system(s) should be developed. Such specifications therefore should pro-
vide an account for the organization and description of various software production task chains, how
they interrelate, when they can iterate, etc., as well as what software tools to use to support different
tasks, and how these tools should be used 141, 48, 67]. Focus then converges on characterizing the
constructs incorporated into the language for specifying and programming software processes. Accord-
ingly, discussion then turns to examine the appropriateness of language constructs for expressing rules
for backward and forward-chaining [50], behavior [89], object type structures, process dynamism,
constraints, goals, policies, modes of user interaction, plans, off-line activities, resource commitments,
etc., across various levels of granularity. This in turn implies that conventional mechanisms such as
operating system shell scripts (e.g., Makefiles on Unix) do not support the kinds of software process
automation these constructs portend.

Lehman [61] and Curtis et al. [281 provide provocative critiques of the potential and limitations
of current proposals for software process automation and programming. Their criticisms, given our
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framework, essentially point out that many process programming proposals (as of 1987) were focused
almost exclusively to those aspects of software engineering that were amenable to automation, such as
tool sequence invocation. They point out how such proposals often fail to address how the production
settings and products constrain and interact with how the software production process is defined and
performed, as revealed in recent empirical software process studies [14, 29, 13].

4.2.3 Knowledge-Based Software Automation (KBSA)

KBSA attempts to take process automation to its limits by assuming that process specifications can
be used directly to develop software systems, and to configure development environments to support
the production tasks at hand. The common approach is to seek to automate the continuous transfor-
mation model 1121. In turn, this implies an automated environment capable of recording the formal-
ized development of operational specifications, successively transforming and refining these specifica-
tions into an implemented system, assimilating maintenance requests by incorporating the new/
enhanced specifications into the current development derivation, then replaying the revised develop-
ment toward implementation [5, 6]. However, current progress has been limited to demonstrating such
mechanisms and specifications on software coding, maintenance, project communication and manage-
ment tasks [5, 6, 24, 70, 51, 75, 76], as well as more recently to software component catalogs and
formal models of software development processes [68, 931.

5.0 SOFTWARE PRODUCTION SETING MODELS

In contrast to product or production process models of software evolution, production setting mod-
els draw attention to organizational and management strategies for developing and evolving software
systems. With rare exception, such models are non-operational. As such, the focus is more strategic.
But it should become clear that such strategies do affect what software products get developed, and
how software production processes will be organized and performed.

The settings of software evolution can be modeled in terms of the people or programs ("agents")
who perform production processes with available resources to produce software products. These agents
can play single or multiple roles during a software development effort. Further, their role might be
determined by their availability, participation in other organized roles, security access rights, or author-
ity (expertise). A role represents the set of skills (i.e., reliable and robust operational plan) needed to
perform some software production task. We often find, for example, software developers in the role(s)
of "specification analyst," "coder," or "QA manager." Further, in order for an agent in a particular
role to perform her/his task, then a minimum set (configuration) of resources (including tools) and
product/process requirements must be provided for task completion. Once again, the descriptions of
which agents play which role in performing what tasks with what resources can also be modeled as
interrelated attributed objects that can be created, composed, and managed in ways similar to those
for software products and processes.

5.1 SOFTWARE PROJECT MANAGEMENT PROCESS MODELS

In parallel to (or on top of) a software development effort, there is normally a management
superstructure to configure and orchestrate the effort. This structure represents a cycle of activities for
which project managers assume the responsibility. The activities include project planning, budgeting
and controlling resources, staffing, dividing and coordinating staff, scheduling deliverables, directing
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and evaluating (measuring) progress, and intervening to resolve conflicts, breakdowns, or resource dis-
tribution anomalies (85, 77, 51, 72, 47]. Planning and control are often emphasized as the critical
activities in software project management [85]. However, other studies suggest that division of labor,
staffing, coordination, scheduling, intervention (e.g., "putting out fires") and negotiation for additional
resources substantially determine the effectiveness of extant planning and control mechanisms as well
as product quality and process productivity [77, 36, 14, 28].

5.2 ORGANIZATIONAL SOFTWARE DEVELOPMENT MODELS

Software development projects are plagued with many recurring organizational dilemmas which can
slow progress [55, 53, 56, 77, 36, 28, 63]. Problems emerge from unexpected breakdowns or incom-
plete understandings of the interc. pendencies that exist between the software products under develop-
ment, the production techniques in use, and the interactions between the different agents (customers,
end users, project managers, staff engineers, maintenance vendors, etc.) and the different resources
they transact in the organizational production setting. Experienced managers recognize these dilemmas
and develop strategies for mitigating or resolving their adverse effects. Such strategies form an informal
model for how to manage software development throughout its life cycle. However, these models or
strategies often do not get written down except by occasional outside observers. This of course
increases the value of an experienced manager, while leaving the more common unexperienced soft-
ware development manager disadvantaged. These disadvantaged and less-experienced software manag-
ers are therefore more likely to waste organizational effort and scarce resources in recreating, experi-
encing, and evaluating problems of a similar kind that have already transpired before. In a similar
manner, there are key software engineers, "system gurus," and the like who maintain a deep under-
standing of software system architecture or subtle operational features when such characteristics are
not written down 129). These key people often provide highly-valued expertise, whose loss can be
very detrimental to their host organization. Thus, these outside analysts can provide a valuable service
through publication of their findings of observed or synthesized heuristics concerning organizational
software development dynamics (77, 29].

In another study of software project teamwork in organizational settings, recent research has
revealed that (a) there are many different forms of teamwork structure, (b) that software people fre-
quently change their work structure in response to unplanned contingencies, and (c) different patterns
of work structures are associated with higher software productivity or higher quality products [13].
What this suggests is that it is possible for organizations to create or impose software production proc-
esses which may work well in certain circumstances, but do poorly or fail in others. This suggests that
generic software production processes and supporting tools that fail to address how software people
will (re)structure their work are only partial solutions. Thus, what is needed is an approach to soft-
ware development that addresses on more equal terms, the products, production processes, and pro-
duction settings where people work together to develop, use, and evolve software systems.

5.3 CUSTOMER RESOURCE LIFE CYCLE MODELS

With the help of information (i.e., software) systems, a company can become more competitive in
all phases of its customer relationships. The customer resource life cycle (CRLC) model is claimed to
make it possible for such companies to determine when opportunities exist for strategic applications
[49, 92]. Such applications change a firm's product line or the way a firm competes in its industry.
The CRLC model also indicates what specific application systems should be developed.

The CRLC model is based on the following premises: the products that an organization provides
to its customers are, from the customer viewpoint, supporting resources. A customer then goes through
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a cycle of resource definition, adoption, implementation and use. This can require a substantial invest-
ment in time, effort, and management attention. But if the supplier organization can assist the cus-
tomer in managing this resource life cycle, the supplier may then be able to differentiate itself from its
competitors via enhanced customer service or direct cost savings. Thus, the supplier organization
should seek to develop and apply software systems that support the customer's resource life cycle.
[49] and [92] describe two approaches for articulating CRLC models and identifying strategic software
system applications to support them.

The purpose of examining such models is to observe that forces and opportunities in a market-
place such as customer relationships, corporate strategy, and competitive advantage can help deter-
mine the evolution of certain kinds of software systems.

5.4 SOFTWARE TECHNOLOGY TRANSFER AND TRANSITION MODELS

The software innovation life cycle circumscribes the technological and organizational passage of
software systems. This life cycle therefore includes the activities that represent the transfer and transi-
tion of a software system from its producers to its consumers. This life cycle includes the following
non-linear sequence of activities [73, 79]:

• Invention and prototyping: software research and exploratory prototyping

• Product development: the software development life cycle

• Diffusion: packaging and marketing systems in a form suitable for widespread dissemina-
tion and use

• Adoption and Acquisition: deciding to commit organizational resources to get new systems
installed

" Implementation: actions performed to assimilate newly acquired systems into existing work
and computing arrangements

" Routinization: using implemented systems in ways that seem inevitable and part of stan-
dard procedures

* Evolution: sustaining the equilibrium of routine use for systems embedded in community of
organizational settings through enhancements, restructuring, debugging, conversions, and
replacements with newer systems.

Available research indicates that progress through the software innovation life cycle can take 7-20
years for major software technologies (e.g., Unix, expert systems, programming environments, Ada)

[73]. Thus, moving a software development organization to a new technology can take a long time,
great effort, and many perceived high risks. Research also indicates that most software innovations
(small or large) fail to get properly implemented, and thus result in wasted effort and resources [79].
The failure here is generally not technical, but instead primarily organizational. Thus, organizational
circumstances and the people who animate them have far greater affect in determining the successful
use and evolution of a software innovation, than the innovation's technical merit. However, software
technology transfer is an area requiring much more research [791.

5.5 OTHER MODELS OF SYSTEM PRODUCTION AND
MANUFACTURING

What other kinds of models of software production might be possible? If we look to see how
other technological systems are developed, we find the following sort of models for system production:
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" Ad-hoc problem solving, tinkering, and articulation work: the weakest model of produc-
tion is when people approach a development effort with little or no prepared plan at
hand, and thus rely solely upon their skill, ad hoc tools, or the loosely coordinated efforts
of others to get them through. It is situation specific and driven by accommodations to
local circumstances. It is therefore perhaps the most widely practiced form of production
and system evolution.

" Group project: software life cycle and process efforts are usually realized one at a time,
with every system being treated somewhat uniquely. Thus such efforts are often organized
as group projects.

* Custom job shop: job shops take on only particular kinds of group project work, due to
more substantial investment in tooling and production skill/technique refinement as well as
more articulate application requirements. Most software development organizations,
whether an independent firm or a unit of a larger firm, are operated as software job
shops.

" Batched production: provides the customization of job shops but for a larger production
volume. Subsystems in development are configured on jigs that can either be brought to
workers and production tools, or that tools and workers can be brought to the raw materi-
als for manufacturing or fabrication or to the subsystems.

" Pipeline: when system development requires the customization of job shops or the speciali-
zation of volume of batched production, while at the same time allowing for concurrently
staged sequences of subsystem development. The construction of tract housing and office
towers are typically built according to, respectively, horizontal or vertical pipelines.

* Flexible manufacturing systems: seek to provide the customization capabilities of job
shops, while relying upon advanced automation to allow economies of scale, task stan-
dardization, and delivery of workpieces of transfers lines realized through rapidly
reconfigurable workstation tooling and process programming. Recent proposals for "soft-
ware factories" have adopted a variation of this model called flexible software
manufacturing systems 181].

* Transfer (assembly) lines: when raw input resources or semi-finished sub-assemblies can
be moved through a network of single action manufacturing workstations. Such a produc-
tion network is called either a transfer line or assembly line. Most mass-produced con-
sumer goods (those with high production volumes and low product variation) are manufac-
tured on some form of assembly line. Notions of productivity measurement and quality
assurance are most often associated with, and most easily applied to, transfer/assembly
lines.

* Continuous process control: when the rate or volume of uniform raw input resources and
finished output products can be made continuous and automatically variable, then a con-
tinuous process control form of production is appropriate. Oil refining is an example of
such a process, with crude oil from wells as input, and petroleum products (gasoline,
kerosene, multi-grade motor oil) as outputs. Whether software can be produced in such a
manner is unlikely at this time.

6.0 WHERE DO TOOLS AND TECHNIQUES FIT INTO
THE MODELS?

Given the diversity of software life cycle and process models, where do software engineering tools
and techniques fit into the picture? This section briefly identifies some of the places where different
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software engineering technologies can be matched to certain models. Another way to lock at this sec-
tion might be to consider instead what software engineering technologies might be available in your
setting, then seek a model of software evolution that is compatible.

6.1 LIFE CYCLE SUPPORT MECHANISMS

Most of the traditional life cycle models are decomposed as stages. These stages then provide
boundaries whereby software engineering technologies are targeted. Thus, we find er.gineering tech-
niques or methods (e.g., Yourdon structured design, TRW's software requirements engineering meth-
odology (SREM)) being targeted to support different life cycle stages, and tools (e.g., TRW's require-
ments engineering and verification system (REVS)) targeted to support the associated activities.
However, there are very few, if any, packages of tools and techniques that purport to provide inte-
grated support for engineering software systems throughout their life cycle [81]. Perhaps this is a
shortcoming of the traditional models, perhaps indicative that the integration required is too substantial
to justify its expected costs or benefits, or perhaps the necessary technology is still in its infancy.
Thus, at present, we are more likely to find ad-hoc or loose collections of software engineering tools
and techniques that provide partial support for software life cycle engineering.

6.2 PROCESS SUPPORT MECHANISMS

There are at least three kinds of software process support mechanisms: product articulation tech-
nologies, process measurement and analysis technologies, and computational process models and envi-
ronments.

Product articulation technologies denote the software prototyping tools, reusable software compo-
nents libraries, and application generator languages, and documentation support environments for
more rapidly developing new software systems. These technologies often embody or implicitly support
a software product development life cycle when restricted to well-chosen and narrow application
domains. This means that these technologies can be employed in ways that enable the traditional soft-
ware life cycle stages to be performed with varying degrees of automated assistance.

Process measurement and analysis technologies denote the questionnaire, survey, or performance
monitoring instruments used to collect quantifiable data on the evolving characteristics of software
products, processes, and settings. Collected data can in turn be analyzed with statistical packages to
determine descriptive and inferential relationships within the data. These relationships can then be
interpreted as indicators for where to make changes in current practices through a restructuring of
work/resources, or through the introduction of new software engineering technologies. Such measure-
ment and analysis technologies can therefore accommodate process refinements that improve its over-
all performance and product quality.

Computational process models denote formalized descriptions of software development activities in
a form suitable for automated processing. Such models are envisioned to eventually be strongly cou-
pled to available process support environments which supports the configuration and use of software
engineering tools and techniques to be programmed and enacted. These models will be knowledge-in-
tensive: that is, they will incorporate extensive knowledge of the characteristics and interrelationships
between software development products, processes, and production settings. In turn, these models will
be described in languages whose constructs and formalization may go well beyond those found in
popular programming languages or simulation systems. However, at present, computational process
models primarily serve to help articulate more precise descriptions for how to conduct different
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software engineering activities, while programmable support environments are still in the early stages of
research.

7.0 EVALUATING LIFE CYCLE MODELS AND
METHODOLOGIES

Given the diversity of software life cycle and process models, how do we decide which if any is
best, or which to follow? Answering this question requires further research in general, and knowledge
of specific software development efforts in particular.

7.1 COMPARATIVE EVALUATION OF LIFE CYCLE AND PROCESS
METHODOLOGIES

As noted in Section I, descriptive models of software evolution require the empirical study of its
products. how and where they are produced as well as their interdependencies. Therefore, how should
such a study be designed to realize useful, generalizable results?

Basically, empirical studies of actual software life cycles or processes should ultimately lead to
models of evolution with testable predictions [30, 10). Such models in turn must account for the
dynamics of software evolution across different types of application programs, engineering techniques,
and production settings across different sets of comparable data. This means that studies of software
evolution must utilize measurements that are reliable, valid, and stable. Reliability refers to the extent
that the measures are accurate and repeatable. Validity indicates whether the measured values of
process variables are in fact correct. Stability denotes that the instrument measures one or more proc-
ess variables in a consistent manner across different data sets [30]. Constraints such as these thus usu-
ally point to the need for research methods and instruments that give rise to quantitative or statistical
results [30, 9, 10].

However, most statistical instruments are geared for snapshot studies where certain variables can
be controlled, while others are independent. Lehman and Belady utilize such instruments in their
evaluation of large software system attributes 159]. Their study utilizes data collected over periodic
intervals for a sample of large software systems over a number of years. However, their results only
make strong predictions about global dynamics of product (program) evolution. That is, they cannot
predict what will happen at different life cycle stages, in different circumstances, or for different kinds
of software systems. To make such predictions requires a different kind of study, analysis and instru-
mentation.

Van den Bosch, et al. [87], and Curtis et al. [28, 29] among others [14, 13] propose an alterna-
tive approach to studying software evolution. They rely upon comparative field studies of a sample of
software efforts in different organizational settings. Their approach is targeted to constructing a frame-
work for discovering the mechanisms and organizational processes that shape software e olution with a
comparative study sample. The generality of the results they derive can thus be assesses4 in terms of
the representativeness of their sample space.

In a different way, Kelly [521 provides an informing comparative analysis of tour methods for the
design of real-time software systems. Although his investigation does not compare models of software
evolution, his framework is suggestive of what might be accomplished through comparative analysis of
such models.
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Other approaches that report on the comparative analysis of software evolution activities and out-
comes can be found elsewhere [55, 9, 19].

7.2 RESEARCH PROBLEMS AND OPPORTUNITIES

As should be apparent, most of the alternative models of software evolution are relatively new,
and in need of improv -nent and empirical grounding. It should however also be clear that such mat-
ters require research investigations. Prescriptive models can be easy to come by, whereas descriptive
models require systematic research regimens which can be costly, but of potentially higher quality and
utility. Nonetheless, there are many opportunities to further develop, combine, or refute any of the
alternative models of software evolution. Comparative research design methods, data sampling, collec-
tion, and analysis are all critical topics that require careful articulation and scrutiny [101. And each of
the alternative models, whether focussing attention to either software products, production processes,
production settings, or their combination can ideally draw upon descriptive studies as the basis of their
prescriptions [7). In turn, such models and studies will require notations or languages whose constructs
support computational formalization, analysis, and processing. This processing is needed to insure the
consistency, completeness, and traceability of the modeled processes, as well as to provide a host
environment of conducting experimental or improvement-oriented studies of software evolution. Thus,
we are at . point wh.re empirical studies of software life cycle and process models (or their compo-
nents) are needed, and likely to be very influential if investigated systematically and rigorously.

Therefore, in broader terms, it is appropriate to devote some attention to the problem of design-
ing a set of experiments intended to substantiate or refute a model of software evolution, where criti-
cal attention should then be devoted to evaluating the quality and practicality (i.e., time, effort, and
resources required) of the proposed research.

8.0 CUSTOMIZABLE LIFE CYCLE PROCESS MODELS

Given the emerging plethora of models of software evolution, how does one choose which model
to put into practice? This will be a recurring question in the absence of empirical support for the
value of one model over others. We can choose whether to select an existing model, or else to
develop a custom model. Either way, the purpose of having a model is to use it to organize software
development efforts in a more effective, more productive way. But this is not a one-shot undertaking.
Instead, a model of software evolution is likely to be most informing when not only used to prescribe
software development organization, but also when used to continually measure, tune, and refine the
organization to be more productive, risk-reducing, and quality driven [47, 72, 11]. In this regard, the
purpose in selecting, defining, and applying a model of software evolution is to determine what, how,
and where to intervene or change current software production practices or policies.

8.1 SELECTING AN EXISTING MODEL

Choosing the model that's right for your software project and organization is the basic concern. At
this time, we can make no specific recommendation for which model is best in all circumstances. The
choice is therefore open-ended. However, we might expect to see the following kinds of choices being
made with respect to existing models: At present, most software development organizations are likely
to adopt one of the traditional life cycle models. Then they will act to customize it to be compatible
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with other organizational policies, procedures, and market conditions. Software research organizations
will more likely adopt an alternative model, since they are likely to be interested in evaluating the
potential of emerging software technologies. When development organizations adopt software technolo-
gies more closely aligned to the alternative models (e.g., reusable components, rapid prototyping),
they may try to use such models either experimentally, or to shoehorn them into a traditional life
cycle model, with many evolutionary activities kept informal and undocumented. Alternaively,
another strategy to follow is to do what some similar organization has done, and to use the model
they employ. Studies published by researchers at IBM and AT&T Bell Laboratories are often influen-
ual in this regard [47, 72, 94].

8.2 CUSTOMIZING YOUR OWN MODEL

Basili and Rohmbach [ill are among those who advocate the development of a custom life cycle
process model for each project and organization. Empirical studies of software development seem to
indicate that life cycle process modeling will be most effective and have the greatest benefit if prac-
ticed as a regular activity. Process metrics and measurements need to be regularly applied to capture
data on the effectiveness of current process activities. As suggested above, it seems likely that at this
time, the conservative strategy will be to adopt a traditional life cycle model and then seek to modify
or extend it to accommodate new software product or production process technologies and measures.
However, it seems just as likely that software development efforts that adopt software product, produc-
tion process and production setting concerns into a comprehensive model may have the greatest
potential for realizing substantial improvement in software productivity, quality, and cost reduction
[80].

8.3 USING PROCESS METRICS AND EMPIRICAL MEASUREMENTS

One important purpose of building or buying a process model is to be able to apply it to current
software development projects in order to improve project productivity, quality, and cost-effectiveness
147. 72]. The models therefore provide a basis for instrumenting the software process in ways that
potentially reveal where development activities are less effective, where resource bottlenecks occur,
and where management interventions or new technologies could have a beneficial impact [11, 94].
Scacchi and Kintala [80] go so far as to advocate an approach involving the application of knowledge-
based technologies for modeling and simulating software product, production process, and production
setting interactions based upon empirical data (i.e., knowledge) acquired through questionnaire sur-
veys, staff interviews, observations, and on-line monitoring systems. Such an approach is clearly within
the realm of basic research, but perhaps indicative of the interest in developing high-potential, cus-
tomizable models of software evolution.

8.4 STAFFING THE LIFE CYCLE PROCESS MODELING ACTIVITY

Ideally, the staff candidate best equipped to organize or analyze an organization's model of soft-
ware evolution is one who has mastered the range of material outlined above, or along the lines sug-
gested elsewhere [451. That is, a staff member who has only had an introductory or even intermediate
level exposure to this material is not likely to perform software life cycle or process modeling compe-
tently. Large software development organizations with dozens, hundreds, or even thousands of soft-
ware developers are likely to rely upon one or more staff members with a reasonably strong back-
ground in local software development practices and experimental research skills. This suggests that
such staff are therefore likely to possess the equivalent of a masters or doctoral degree software
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engineering or experimental computer science. In particular, a strong familiarity with experimental
research methods, field studies, sampling strategies, questionnaire design, survey analysis, statistical
data analysis package- and emerging software technologies are the appropriate prerequisites. Simply
put, this is not a job for any software engineer, but instead a job for software engineer (or industrial
scientist) with advanced training and experience in experimental research tools and techniques.

9.0 CONCLUSIONS

In conclusion, we reiterate our position: contemporary models of software evolution must account
for the products, production processes, and settings, as well as their interrelationships that arise during
software development, use, and maintenance. Such models can therefore utilize features of traditional
software life cycle models, as well as those of automatable software process models.

The models of software evolution that were presented and compared in this article begin to sug-
gest the basis for establishing a substantial theory of software evolution. Such a theory, however, will
not likely take on a simple form. Software evolution is a "soft and difficult" research problem whose
manifestation lies in complex organizational settings that are themselves open-ended and evolving. This
suggests that significant attempts to formulate such a theory must be based upon comparative analysis
of systematic empirical observations of software development efforts across multiple cases. Prescriptive
models of software evolution that lack such grounding can at best be innovative and insightful, but
nonetheless speculative. Prescriptive models might in fact give rise to new technological regimens and
artifacts, and thereby become yet another force that shapes how software systems evolve. Thus, there
is an important role to be served by prescriptive models, but such a role is not the same as that
intended for a descriptive, empirically grounded theory with testable predicted outcomes.

A number of potential areas for further research were identified as well. First, there are tools and
techniques in domains such as manufacturing and chemical engineering which have been automated
and in use for a number of years with observable results. This suggests that these technologies should
be investigated to determine whether or how their (prescriptive) conceptual mechanisms can be lifted
and transformed for use in software system development projects. Similarly, as models of software
evolution grow to include software technology transfer and transition, there will be need for tools and
techniques to support the capture, analysis, and processing of the enlarged models as well.

Second, there is a unproductive and ineffective divide between (a) the technology-driven software
product and production process models, and (b) the organization-driven software production setting
models. Recent research efforts have begun to cover the gap through the utilization of descriptive ana-
lytical frameworks that treat technological and organizational variables in equal, interdependent terms.
Continuing investigations along this line should lead to more substantive models or theories software
evolution than continued efforts on only one side of the divide.

Third, given new models or theories of software evolution, we can again address questions of
where software engineering tools and techniques fit into the models. Conversely, when new software
development technologies become available, how will they mesh with the new models? In any event, it
becomes clear that the models of software evolution must themselves evolve, or else become dated
and potentially another reverse salient in software engineering progress.

Fourth, the comparative, empirical evaluation of software development efforts and models of evo-
lution is still an uncommon tradition in the software engineering research community. Perhaps this is
due to the relatively small number of software engineering people who are trained in the requisite
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qualitative and quantitative methods that are part of the experimental research design tradition (30, 9,
19, 87, 20, 10, 14, 29, 131. Therefore, this represents an area that should be addressed through soft-
ware engineering curriculum enhancements. Nonetheless, their is a dearth of systematic empirical stud-
ies of actual software development, use, and maintenance efforts. Thus, there is a clear need to sup-
port the growth of this kind of science. Last, both of these recommendations represent an opportunity
to create a national archive of experimental studies, data, and results whose network-accessible data-
base would be treated as a national resource that would continue to grow over time if proven effec-
tive.

Fifth, the potential to develop models of software evolution that can be customized to product,
production process, and production setting characteristics holds promise for a tangible payoff from the
modeling efforts. Such models offer the potential to address both the technological and organizational
aspects of software evolution. Further, such models will benefit from explicit computational formula-
tion and realization. This in turn suggests that new software engineering environments may be con-
structed that can directly capture, model and simulate-literally execute software development in an
abstract form as a way of running a software development effort ahead of itself. Such simulation
together with empirical observation provides a means for refining and improving the model of software
evolution, as well as serving as a growing archive of local software development history and experi-
ence.

Overall, the goal of developing an empirically grounded theory of software evolution is ambitious.
Building models of software evolution in computational form is an increasingly inevitable requirement
for making progress in this area. This paper therefore serves as a starting point and an initial map for
how to get there.
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